====== Criteria equations ====== Performance criteria are used in several files. Different criterion is given in [[start:HYPE_file_reference:subassX.txt|subass.txt]] and [[start:HYPE_file_reference:simass.txt|simass.txt]] files. In addition criteria can be selected in [[start:hype_file_reference:info.txt#performance_criteria_options|info.txt]]. [[start:hype_file_reference:info.txt:criteria_equations#code_to_equation_coupling|Below]] is listed the code/heading used in each file together with the equation identificator. [[start:hype_file_reference:info.txt:criteria_equations#equation_definitions|Further down]] all the equations are defined. ===== Code to equation coupling ===== Equation IDs for subbasin assessment criteria ([[start:HYPE_file_reference:subassX.txt|subassX.txt]]): ^ Heading ^ Description ^ Equation ID ^ |''NSE''|Nash-Sutcliffe efficiency|//NSE//| |''CC''|Pearson correlation coefficient (Kling-Gupta efficiency, part 1)|//CC//| |''RE(%)''|relative bias in percent|//RE%//| |''RSDE(%)''|relative error in standard deviation in percent|//RS%//| |''Sim''|average of simulated variable|//cm//| |''Rec''|average of observed variable|//rm//| |''SDSim''|standard deviation of simulated variable|//cd//| |''SDRec''|standard deviation of observed variable|//rd//| |''MAE''|mean absolute error |//MAE//| |''RMSE''|root mean square error |//RMSE//| |''Bias''|bias|//Bias//| |''SDE''|Error of standard deviation|//ES//| |''KGE''|Kling-Gupta efficiency |//KGE//| |''KGESD''|Kling-Gupta efficiency, part 2|//KGESD//| |''KGEM''|Kling-Gupta efficiency, part 3|//KGEM//| |''NRMSE''|normalised root mean square error |//NE//| |''NSEW''|Nash-Sutcliffe efficiency adjusted for bias|//NSEW//| |''MinRec''|minimum of observed variable|//rmin//| |''MaxRec''|maximum of observed variable|//rmax//| |''MinSim''|minimum of simulated variable|//cmin//| |''MaxSim''|maximum of simulated variable|//cmax//| Equation IDs for simulation assessment criteria ([[start:HYPE_file_reference:simass.txt|simass.txt]]): ^ Name ^ Code ^ Equation ID ^ | Regional NSE | ''RR2'' | //REGNSE// | | Regional RA | ''RRA'' | //REGRA// | | Regional RE | ''RRE'' | //REGRB// | | Regional MAE | ''-'' | //REGMAE// | | Average NSE | ''MR2'' | //AVNSE// | | Average RA | ''MRA'' | //AVRA// | | Average RE | ''MRE'' | //AVRB// | | Average RSDE | ''MRS'' | //AVRSB// | | Average CC | ''MCC'' | //AVCC// | | Average ARE | ''MAR'' | //AVARB// | | Average KGE | ''AKG'' | //AVKGE// | | Aver scalKGE | ''ASK'' | //ASCKGE// | | Spatial NSE | ''SR2'' | //SPATNSE// | | Spatial RA | ''RRA'' | //SPATRA// | | Spatial RE | ''-'' | //SPATRB// | | Spatial Bias | ''SMB'' | //SPATASB// | | Spatial RMSE | ''SNR'' | //SPATRMSE// | | Kendalls Tau | ''TAU'' | //AVTAU// | | Median NSE | ''MD2'' | //MEDNSE// | | Median RA | ''MDA'' | //MEDRA// | | Median KGE | ''MKG'' | //MEDKGE// | | Median NRMSE | ''MNR'' | //MEDNE// | | Mean NSEW | ''MNW'' | //AVNSEW// | Equation IDs for calibration simulation assessment criteria ([[start:HYPE_file_reference:bestsims.txt|bestsims.txt]] and [[start:HYPE_file_reference:allsim.txt|allsim.txt]]): ^ Heading ^ Description ^ Equation ID ^ |''rr2''|regional Nash-Sutcliffe efficiency (data from all subbasins combined in one data series)|//REGNSE//| |''sr2''|spatial Nash-Sutcliffe efficiency, calculated using annual means for all subbasins (requires at least 5 years and 5 subbasins with data) to form one data series to calculate the Nash-Sutcliffe efficiency on|//SPATNSE//| |''mr2''|average of Nash-Sutcliffe efficiency for subbasins|//AVNSE//| |''rmae''|regional mean absolute error (data from all subbasins combined in one data series)|//REGMAE//| |''sre''|spatial relative bias (calculated on annual means for all subbasins)|//SPATRB//| |''rre''|regional relative bias (data from all subbasins combined in one data series)|//REGRB//| |''mre''|average of the relative bias for all subbasins (Note: fraction, not %)|//AVRB//| |''rra''|regional RA, similar to regional NSE, RA is a Nash-Sutcliffe like criterion where the square in the Nash-Sutcliffe formula is exchanged with a coefficient value|//REGRA//| |''sra''|spatial RA, similar to spatial NSE, RA is a Nash-Sutcliffe like criterion where the square in the Nash-Sutcliffe formula is exchanged for a coefficient value|//SPATRA//| |''mra''|average value of RA for subbasins, RA is a Nash-Sutcliffe like criterion where the square in the Nash-Sutcliffe formula is exchanged with a coefficient value|//AVRA//| |''tau''|average of Kendall's Tau value for subbasins|//AVTAU//| |''md2''|median of Nash-Sutcliffe efficiency for subbasins|//MEDNSE//| |''mda''|median of all subbasins’ RA (Nash-Sutcliffe like criteria where the square is exchanged with a coefficient value)|//MEDRA//| |''mrs''|average of error in standard deviation for subbasins|//AVRSB//| |''mcc''|Pearson correlation coefficient, average of all subbasins with observations|//AVCC//| |''mdkg''|median of Kling-Gupta efficiency (MKG in [[start:hype_file_reference:info.txt|info.txt]]) for subbasins|//MEDKGE//| |''akg''|average of Kling-Gupta efficiency for subbasins|//AVKGE//| |''asckg''|average of Kling-Gupta efficiency rescaled to interval [-1,1] (C2M criteria applied to KGE, Mathevet et al. 2006)|//ASCKGE//| |''mare''|average of absolute relative bias for subbasins (Note: fraction. not %) (MAR in [[start:hype_file_reference:info.txt|info.txt]])|//AVARB//| |''mdnr''|median of normalised RMSE for subbasins|//MEDNE//| |''mnw''|average of Nash-Sutcliffe efficiencies adjusted for bias for subbasins|//AVNSEW//| |''snr''|spatial root mean square error|//SPATRMSE//| |''smb''|spatial mean absolute scaled bias on natural log transformed values|//SPATASB//| Equation IDs for performance criteria set in info.txt are tabled [[start:HYPE_file_reference:info.txt:criteria|here]]. ===== Equation definitions ===== ==== Denotations ==== |//c//|computed value| |//r//|recorded value| |//cl//|log transform of computed value, natural logarithm| |//rl//|log transform of recorded value, natural logarithm| |//i//|index for time steps with observations in a time series of a station| |//mi//|number of values in a time series of a station| |//j//|index of stations| |//mj//|number of stations| |//ij//|index over time steps with observations for all stations| |//mij//|number of time steps with obsevations for all stations| |//cm//|average value of c_{i}, i=1,mi for a station| |//rm//|average value of r_{i}, i=1,mi for a station| |//cd//|standard deviation of c_{i}, i=1,mi for a station| |//rd//|standard deviation of r_{i}, i=1,mi for a station| |//cmax//|maximum value of c_{i}, i=1,mi for a station| |//rmax//|maximum value of r_{i}, i=1,mi for a station| |//cmin//|minimum value of c_{i}, i=1,mi for a station| |//rmin//|minimum value of r_{i}, i=1,mi for a station| |//w//|weight of station| ==== Basic equations ==== Average value for a time series of a station: xm = {1/mi} sum{i=1}{mi}{x_{i}} //x=r// or //c// Standard deviation of a time series of a station: xd = sqrt{{1/mi} sum{i=1}{mi}{{x_{i}}^2}-xm^2} //x=r// or //c// Natural logaritm of value: xl = LN(x) //x=r// or //c// or //rm// or //cm//, //x>0// ====Criteria equations for a time series of a station==== Nash-Sutcliffe Efficiency (//NSE// or R2): NSE = 1-{sum{i=1}{mi}{(c_{i}-r_{i})^2}}/{sum{i=1}{mi}{(r_{i}-rm)^2}} Efficiency with coefficient a (//RA//): RA = 1-{sum{i=1}{mi}{delim{|} {c_{i}-r_{i}} {|}^a}}/{sum{i=1}{mi}{delim{|} {r_{i}-rm} {|}^a}} Bias: Bias = {sum{i=1}{mi}{(c_{i}-r_{i})}}/mi Relative bias (//RB// or RE): RB = {sum{i=1}{mi}{(c_{i}-r_{i})}}/{delim{|}{sum{i=1}{mi}{r_{i}}}{|}} Relative bias in percent (//RE%//): RE% = RB*100 = {{sum{i=1}{mi}{(c_{i}-r_{i})}}/{delim{|}{sum{i=1}{mi}{r_{i}}}{|}}}*100 Error of standard deviation (//ES//): ES = {cd-rd} Relative error of standard deviation (//RS//): RS = {{cd-rd}/rd} Relative error of standard deviation in percent (//RS%//): RS% = RS*100 = {{cd-rd}/rd}*100 Mean absolute error (//MAE//): MAE = {sum{i=1}{mi}{delim{|}{c_{i}-r_{i}}{|}}}/mi Kling-Gupta efficiency (//KGE//): KGE = 1-sqrt{(CC-1)^2+(cd/rd-1)^2+(cm/rm-1)^2} //cm>0// and //rm>0// and //cd>0// and //rd>0// Pearson correlation coefficient, Kling-Gupta efficiency part 1 (//CC//): CC = {{1/mi} sum{i=1}{mi}{({r_{i}}*{c_{i}})}-cm*rm}/{cd*rd} Kling-Gupta efficiency part 2 (//KGESD//): KGESD = cd/rd Kling-Gupta efficiency part 3 (//KGEM//): KGEM = cm/rm Root mean square error (//RMSE//): RMSE = sqrt{{1/mi sum{i=1}{mi}{({c_{i}}-{r_{i}})^2}}} Normalised root mean square error (//NE//): NE = sqrt{{1/mi sum{i=1}{mi}{({c_{i}}-{r_{i}})^2}}}/{max{(r_{i}})} Kendalls rank correlation coefficient, tau-b, with adjustments for ties (//TAU//): TAU = {n_{c}-n_{d}}/{sqrt{(n_{0}-n_{1})(n_{0}-n_{2})}} Nash-Sutcliffe Efficiency adjusted for bias (//NSEW//). Introduced in Lindström (2016): NSEW = NSE+Bias^2/rd^2 where n_{c} = number of concordant pairs ( c_{i}c_{k} and r_{i}>r_{k}, i=1,mi k=1,mi ) n_{d} = number of discordant pairs ( c_{i}r_{k} or c_{i}>c_{k} and r_{i}) n_{0} = number of compared pairs n_{1} = number of compared pairs that ties in the computed values n_{2} = number of compared pairs that ties in the recorded values Scaled bias (//ScBias//): ScBias = {sum{i=1}{mi}{delim{|}{{(c_{i}-r_{i})}/{(c_{i}+r_{i})}}{|}}}/mi Scaled KGE (//SCKGE//): SCKGE = KGE/{2-KGE} ====Criteria equations for a model domain (several stations)==== Average Nash-Sutcliffe efficiency (//AVNSE//): //AVNSE// arithmetric mean AVNSE = {1/mj sum{j=1}{mj}{NSE_{j}}} or //AVNSE// weighted average AVNSE = {sum{j=1}{mj}{w_{j}*NSE_{j}}}/{sum{j=1}{mj}{w_{j}}} Median Nash-Sutcliffe efficiency (//MEDNSE//): MEDNSE = median delim{lbrace}{{NSE_{j}},{j=1..mj}}{rbrace} Spatial Nash-Sutcliffe efficiency (//SPATNSE//): SPATNSE = 1-{sum{j=1}{mj}{(cm_{j}-rm_{j})^2}}/{sum{j=1}{mj}{(rm_{j}-{1/mj} sum{j=1}{mj}{rm_{j}})^2}} Regional Nash-Sutcliffe efficiency (//REGNSE//): REGNSE = 1-{sum{ij=1}{mij}{(c_{ij}-r_{ij})^2}}/{sum{ij=1}{mij}{(r_{ij}-{1/mij} sum{ij=1}{mij}{r_{ij}})^2}} Average Nash-Sutcliffe efficiency adjusted for bias (//AVNSEW//): //AVNSEW// arithmetric mean AVNSEW = {1/mj sum{j=1}{mj}{NSEW_{j}}} or //AVNSEW// weighted average AVNSEW = {sum{j=1}{mj}{w_{j}*NSEW_{j}}}/{sum{j=1}{mj}{w_{j}}} Average efficiency with coefficient a (//AVRA//): //AVRA// arithmetric mean AVRA = {1/mj sum{j=1}{mj}{RA_{j}}} or //AVRA// weighted average AVRA = {sum{j=1}{mj}{w_{j}*RA_{j}}}/{sum{j=1}{mj}{w_{j}}} Median efficiency with coefficient a (//MEDRA//): MEDRA = median delim{lbrace}{{RA_{j}},{j=1..mj}}{rbrace} Spatial efficiency with coefficient a (//SPATRA//): SPATRA = 1-{sum{j=1}{mj}{delim{|}{cm_{j}-rm_{j}}{|}^a}}/{sum{j=1}{mj}{delim{|}{rm_{j}-{1/mj} sum{j=1}{mj}{rm_{j}}}{|}^a}} Regional efficiency with coefficient a (//REGRA//): REGRA = 1-{sum{ij=1}{mij}{delim{|}{c_{ij}-r_{ij}}{|}^a}}/{sum{ij=1}{mij}{delim{|}{r_{ij}-{1/mij} sum{ij=1}{mij}{r_{ij}}}{|}^a}} Average relative bias (//AVRB//): //AVRB// arithmetric mean AVRB = {1/mj sum{j=1}{mj}{RB_{j}}} or //AVRB// weighted average AVRB = {sum{j=1}{mj}{w_{j}*RB_{j}}}/{sum{j=1}{mj}{w_{j}}} Regional relative bias (//REGRB//): REGRB = {sum{ij=1}{mij}{(c_{ij}-r_{ij})}}/{delim{|}{sum{ij=1}{mij}{r_{ij}}}{|}} Spatial relative bias (//SPATRB//): SPATRB = {sum{j=1}{mj}{(cm_{j}-rm_{j})}}/{delim{|}{sum{j=1}{mj}{rm_{j}}}{|}} Average Kling-Gupta efficiency (//AVKGE//): //AVKGE// arithmetric mean AVKGE = {1/mj sum{j=1}{mj}{KGE_{j}}} or //AVKGE// weighted average AVKGE = {sum{j=1}{mj}{w_{j}*KGE_{j}}}/{sum{j=1}{mj}{w_{j}}} Median Kling-Gupta efficiency (//MEDKGE//): MEDKGE = median delim{lbrace}{{KGE_{j}},{j=1..mj}}{rbrace} Average scaled Kling-Gupta efficiency (//ASCKGE//): //ASCKGE// arithmetric mean ASCKGE = {1/mj sum{j=1}{mj}{SCKGE_{j}}} or //ASCKGE// weighted average ASCKGE = {sum{j=1}{mj}{w_{j}*SCKGE_{j}}}/{sum{j=1}{mj}{w_{j}}} Spatial root mean square error (//SPATRMSE//): SPATRMSE = sqrt{{1/mj sum{j=1}{mj}{({cm_{j}}-{rm_{j}})^2}}} Median of Normalised root mean square error (//MEDNE//): MEDNE = median delim{lbrace}{{NE_{j}},{j=1..mj}}{rbrace} Average of absolute relative bias (//AVARB//): //AVARB// arithmetric mean AVARB = {1/mj sum{j=1}{mj}{delim{|}{RB_{j}}{|}}} or //AVARB// weighted average AVARB = {sum{j=1}{mj}{w_{j}*{delim{|}{RB_{j}}{|}}}}/{sum{j=1}{mj}{w_{j}}} Average Pearson correlation coefficient (//AVCC//): //AVCC// arithmetric mean AVCC = {1/mj sum{j=1}{mj}{CC_{j}}} or //AVCC// weighted average AVCC = {sum{j=1}{mj}{w_{j}*CC_{j}}}/{sum{j=1}{mj}{w_{j}}} Average relative error of standard deviation (//AVRSB//): //AVRSB// arithmetric mean AVRSB = {1/mj sum{j=1}{mj}{RS_{j}}} or //AVRSB// weighted average AVRSB = {sum{j=1}{mj}{w_{j}*RS_{j}}}/{sum{j=1}{mj}{w_{j}}} Average Kendalls rank correlation coefficient (//AVTAU//): //AVTAU// arithmetric mean AVTAU = {1/mj sum{j=1}{mj}{TAU_{j}}} or //AVTAU// weighted average AVTAU = {sum{j=1}{mj}{w_{j}*TAU_{j}}}/{sum{j=1}{mj}{w_{j}}} Regional mean absolute error (//REGMAE//): REGMAE = {sum{ij=1}{mij}{delim{|}{c_{ij}-r_{ij}}{|}}}/mij Spatial mean absolute scaled bias on log transformed values (//SPATASB//): SPATASB = {sum{j=1}{mj}{delim{|}{{cml_{j}-rml_{j}}/{cml_{j}+rml_{j}}}{|}}}/{mj} ==== References ==== Lindström, G., 2016. Lake water levels for calibration of the S-HYPE model. Hydrology Research 47.4:672-682. doi: 10.2166/nh.2016.019. Mathevet et al. 2006. A bounded version of the Nash-Sutcliffe criterion for better model assessment on large sets of basins. In: Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment–MOPEX. IAHS Publ. 307, 2006, p. 211-219.