Criteria equations

Performance criteria are used in several files. Different criterion is given in subass.txt and simass.txt files. In addition criteria can be selected in info.txt. Below is listed the code/heading used in each file together with the equation identificator. Further down all the equations are defined.

Code to equation coupling

Equation IDs for subbasin assessment criteria (subassX.txt):

Heading	Description	Equation ID
NSE	Nash-Sutcliffe efficiency	NSE
CC	Pearson correlation coefficient (Kling-Gupta efficiency, part 1)	CC
RE(%)	relative bias in percent	RE%
RSDE(%)	relative error in standard deviation in percent	RS%
Sim	average of simulated variable	cm
Rec	average of observed variable	rm
SDSim	standard deviation of simulated variable	cd
SDRec	standard deviation of observed variable	rd
MAE	mean absolute error	MAE
RMSE	root mean square error	RMSE
Bias	bias	Bias
SDE	Error of standard deviation	ES
KGE	Kling-Gupta efficiency	KGE
KGESD	Kling-Gupta efficiency, part 2	KGESD
KGEM	Kling-Gupta efficiency, part 3	KGEM
NRMSE	normalised root mean square error	NE
NSEW	Nash-Sutcliffe efficiency adjusted for bias	NSEW

Equation IDs for simulation assessment criteria (simass.txt):

Name	Code	Equation ID
Regional NSE	RR2	REGNSE
Regional RA	RRA	REGRA
Regional RE	RRE	REGRB
Regional MAE	-	REGMAE
Average NSE	MR2	AVNSE
Average RA	MRA	AVRA
Average RE	MRE	AVRB
Average RSDE	MRS	AVRSB
Average CC	MCC	AVCC
Average ARE	MAR	AVARB
Spatial NSE	SR2	SPATNSE
Spatial RA	RRA	SPATRA

Name	Code	Equation ID
Spatial RE	-	SPATRB
Kendalls Tau	TAU	AVTAU
Median NSE	MD2	MEDNSE
Median RA	MDA	MEDRA
Median KGE	MKG	MEDKGE
Median NRMSE	MNR	MEDNE
Mean NSEW	MNW	AVNSEW

Equation IDs for calibration simulation assessment criteria (bestsims.txt and allsim.txt):

Heading	Description	Equation ID
rr2	regional Nash-Sutcliffe efficiency (data from all subbasins combined in one data series)	REGNSE
sr2	spatial Nash-Sutcliffe efficiency, calculated using annual means for all subbasins (requires at least 5 years and 5 subbasins with data) to form one data series to calculate the Nash-Sutcliffe efficiency on	
mr2	average of Nash-Sutcliffe efficiencies for subbasins	AVNSE
rmae	regional mean absolute error (data from all subbasins combined in one data series)	REGMAE
sre	spatial relative bias (calculated on annual means for all subbasins)	SPATRB
rre	regional relative bias (data from all subbasins combined in one data series)	REGRB
mre	average of the relative bias for all subbasins (Note: fraction, not %)	AVRB
rra	regional RA, similar to regional NSE, RA is a Nash-Sutcliffe like criterion where the square in the Nash-Sutcliffe formula is exchanged with a coefficient value	REGRA
sra	spatial RA, similar to spatial NSE, RA is a Nash-Sutcliffe like criterion where the square in the Nash-Sutcliffe formula is exchanged for a coefficient value	SPATRA
mra	average value of RA for subbasins, RA is a Nash-Sutcliffe like criterion where the square in the Nash-Sutcliffe formula is exchanged with a coefficient value	AVRA
tau	average of Kendall's Tau value for subbasins	AVTAU
md2	median of Nash-Sutcliffe efficiency for subbasins	MEDNSE
mda	median of all subbasins' RA (Nash-Sutcliffe like criteria where the square is exchanged with a coefficient value)	MEDRA
mrs	average of error in standard deviation for subbasins	AVRSB
mcc	Pearson correlation coefficient, average of all subbasins with observations	AVCC
mdkg	median of Kling-Gupta efficiency (MKG in info.txt) for subbasins	MEDKGE
mare	average of absolute relative bias for subbasins (Note: fraction. not %) (MAR in info.txt)	AVARB
mnr	median of normalised RMSE for subbasins	MEDNE
mnw	average of Nash-Sutcliffe efficiencies adjusted for bias for subbasins	AVNSEW

Equation IDs for performance criteria set in info.txt are tabled here.

Equation definitions

Denotations

С	computed value		
r	recorded value		
i	index for time steps with observations in a time series of a station		
mi	number of values in a time series of a station		
j	index of stations		
mj	number of stations		
ij	index over time steps with observations for all stations		
mij	number of time steps with obsevations for all stations		
cm	average value of ${^c}_i, i{=}1, mi$ for a station		
rm	average value of r_i , i = 1 , mi for a station		
cd	standard deviation of ${^c}_i, i\!=\!1, mi$ for a station		
rd	standard deviation of ${^r}_i$, $i\!=\!1$, mi for a station		

Basic equations

Average value for a time series of a station:

$$xm = \frac{1}{mi} \sum_{i=1}^{mi} x_i$$

Standard deviation of a time series of a station:

$$xd = \sqrt{\frac{1}{mi} \sum_{i=1}^{mi} x_i^2 - xm^2}$$

Criteria equations for a time series of a station

Nash-Sutcliffe Efficiency (NSE or R2):

$$NSE = 1 - \frac{\sum_{i=1}^{mi} \left(c_i - r_i\right)^2}{\sum_{i=1}^{mi} \left(r_i - r_m\right)^2}$$

Efficiency with coefficient a (RA):

$$RA = 1 - \frac{\sum_{i=1}^{mi} |c_i - r_i|^a}{\sum_{i=1}^{mi} |r_i - r_m|^a}$$

Bias:

$$Bias = \frac{\sum_{i=1}^{mi} (c_i - r_i)}{mi}$$

Relative bias (RB or RE):

$$RB = \frac{\sum_{i=1}^{mi} \left(c_i - r_i\right)}{\left|\sum_{i=1}^{mi} r_i\right|}$$

Relative bias in percent (RE%):

$$RE \% = RB \times 100 = \frac{\sum_{i=1}^{mi} \left(c_i - r_i\right)}{\left|\sum_{i=1}^{mi} r_i\right|} \times 100$$

Error of standard deviation (ES):

$$ES = cd - rd$$

Relative error of standard deviation (RS):

$$RS = \frac{cd \cdot rd}{rd}$$

Relative error of standard deviation in percent (RS%):

$$RS\% = RS \times 100 = \frac{cd - rd}{rd} \times 100$$

Mean absolute error (MAE):

$$MAE = \frac{\sum_{i=1}^{mi} \left| c_{i} - r_{i} \right|}{mi}$$

Kling-Gupta efficiency (KGE):

$$KGE = 1 - \sqrt{\left(CC - 1\right)^2 + \left(\frac{cd}{rd} - 1\right)^2 + \left(\frac{cm}{rm} - 1\right)^2}$$

Pearson correlation coefficient, Kling-Gupta efficiency part 1 (CC):

$$CC = \frac{\frac{1}{mi} \sum_{i=1}^{mi} (r_i \times c_i) - cm \times rm}{cd \times rd}$$

Kling-Gupta efficiency part 2 (KGESD):

$$KGESD = \frac{cd}{rd}$$

Kling-Gupta efficiency part 3 (KGEM):

$$KGEM = \frac{cm}{rm}$$

Root mean square error (RMSE):

$$RMSE = \sqrt{\frac{1}{mi} \sum_{i=1}^{mi} \left(c_i - r_i\right)^2}$$

Normalised root mean square error (NE):

$$NE = \frac{\sqrt{\frac{1}{mi} \sum_{i=1}^{mi} \left(c_i - r_i\right)^2}}{\max\left(r_i\right)}$$

Kendalls rank correlation coefficient, tau-b, with adjustments for ties (TAU):

$$TAU = \frac{n_c - n_d}{\sqrt{\left(n_0 - n_1\right)\left(n_0 - n_2\right)}}$$

Nash-Sutcliffe Efficiency adjusted for bias (NSEW). Introduced in Lindström (2016):

$$NSEW = NSE - \frac{Bias^2}{rd^2}$$

where

 n_c = number of concordant pairs ($c_i < c_k$ and $r_i < r_k$ or $c_i > c_k$ and $r_i > r_k$, i = 1, mik = 1, mik = 1, mik = 1)

 n_d = number of discordant pairs ($c_i < c_k$ and $r_i > r_k$ or $c_i > c_k$ and $r_i < r_k$, i = 1, mik = 1, mik)

 n_0 = number of compared pairs

 n 1 = number of compared pairs that ties in the computed values

 n_2 = number of compared pairs that ties in the recorded values

Criteria equations for a model domain (several stations)

Average Nash-Sutcliffe efficiency (AVNSE):

$$AVNSE = \frac{1}{mj} \sum_{j=1}^{mj} NSE_j$$

Median Nash-Sutcliffe efficiency (MEDNSE):

$$MEDNSE = median \left\{ NSE_{j}, j = 1..mj \right\}$$

Spatial Nash-Sutcliffe efficiency (SPATNSE):

$$SPATNSE = 1 - \frac{\sum_{j=1}^{mj} \left(cm_{j} - rm_{j}\right)^{2}}{\sum_{j=1}^{mj} \left(rm_{j} - \frac{1}{mj} \sum_{j=1}^{mj} rm_{j}\right)^{2}}$$

Regional Nash-Sutcliffe efficiency (REGNSE):

$$REGNSE = 1 - \frac{\displaystyle\sum_{ij=1}^{mij} \left(c_{ij} - r_{ij}\right)^2}{\displaystyle\sum_{ij=1}^{mij} \left(r_{ij} - \frac{1}{mij} \sum_{ij=1}^{mij} r_{ij}\right)^2}$$

Average efficiency with coefficient a (AVRA):

$$AVRA = \frac{1}{mj} \sum_{j=1}^{mj} RA_j$$

Median efficiency with coefficient a (MEDRA):

$$MEDRA = median \left\{ RA_{j}, j = 1..mj \right\}$$

Spatial efficiency with coefficient a (SPATRA):

$$SPATRA = 1 - \frac{\sum_{j=1}^{mj} \left| cm_{j} - rm_{j} \right|^{a}}{\sum_{j=1}^{mj} \left| rm_{j} - \frac{1}{mj} \sum_{j=1}^{mj} rm_{j} \right|^{a}}$$

Regional efficiency with coefficient a (REGRA):

$$REGRA = 1 - \frac{\sum_{ij=1}^{mij} \left| c_{ij} - r_{ij} \right|^a}{\sum_{ij=1}^{mij} \left| r_{ij} - \frac{1}{mij} \sum_{ij=1}^{mij} r_{ij} \right|^a}$$

Average relative bias (AVRB):

$$AVRB = \frac{1}{mj} \sum_{j=1}^{mj} RB_j$$

Regional relative bias (REGRB):

$$REGRB = \frac{\sum_{ij=1}^{mij} \left(c_{ij} - r_{ij}\right)}{\left|\sum_{ij=1}^{mij} r_{ij}\right|}$$

Spatial relative bias (SPATRB):

$$SPATRB = \frac{\sum_{j=1}^{mj} \left(cm_{j} - rm_{j}\right)}{\left|\sum_{j=1}^{mj} rm_{j}\right|}$$

Average Kling-Gupta efficiency (AVKGE):

$$AVKGE = \frac{1}{mj} \sum_{j=1}^{mj} KGE_j$$

Median Kling-Gupta efficiency (MEDKGE):

$$MEDKGE = median \left\{ KGE_{j}, j = 1..mj \right\}$$

Median of Normalised root mean square error (MEDNE):

$$MEDNE = median \left\{ NE_{j}, j = 1..mj \right\}$$

Average of absolute relative bias (AVARB):

$$AVARB = \frac{1}{mj} \sum_{i=1}^{mj} |RB_j|$$

Average Pearson correlation coefficient (AVCC):

$$AVCC = \frac{1}{mj} \sum_{j=1}^{mj} CC_{j}$$

Average relative error of standard deviation (AVRSB):

$$AVRSB = \frac{1}{mj} \sum_{i=1}^{mj} RS_{i}$$

Average Kendalls rank correlation coefficient (AVTAU):

$$AVTAU = \frac{1}{mj} \sum_{j=1}^{mj} TAU_j$$

Regional mean absolute error (REGMAE):

$$REGMAE = \frac{\displaystyle\sum_{ij=1}^{mij}\left|\boldsymbol{c}_{ij} - \boldsymbol{r}_{ij}\right|}{mij}$$

Average Nash-Sutcliffe efficiency adjusted for bias (AVNSEW):

$$AV\!N\!SEW = \!\! \frac{1}{mj} \sum_{j\,=\,1}^{mj} \!\! N\!SEW_{j}$$

References

Lindström, G., 2016. Lake water levels for calibration of the S-HYPE model. Hydrology Research 47.4:672-682. doi: 10.2166/nh.2016.019.