User Tools

Site Tools


start:hype_model_description:hype_routing

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
start:hype_model_description:hype_routing [2019/11/11 13:31]
cpers [Outlet lake with two outlets]
start:hype_model_description:hype_routing [2019/12/17 15:48]
cpers [Basic assumptions]
Line 13: Line 13:
 An outlet lake can be part of a larger lake. It is then called a lake basin. Lake basins are olakes in nearby subbasins. Outlet lakes that are not lake basins are referred to below as simple outlet lakes. ​ An outlet lake can be part of a larger lake. It is then called a lake basin. Lake basins are olakes in nearby subbasins. Outlet lakes that are not lake basins are referred to below as simple outlet lakes. ​
  
-A simple outlet lake has a threshold. The outflow ends if the water level drops below the threshold. Lake mean depth below the threshold is specified in GeoData.txt or LakeData.txt as //​lake_depth//​ in meters. Lake depth can also be set by parameters, i.e general parameter //gldepo// or olake region parameter //​olldepth//​. The threshold is also the the water level of the lake at the start of a simulation. The current water level is denoted as //wlm// in Fig. 2. For printing, the outlet lake water level (output variable //wcom//) is calculated in meters and you can set a reference level (//w0ref//) in LakeData.txt to get the same height system as any observations of the lake's water level. The lake’s //w0ref// is added to the water level above the threshold. HYPE assumes the lake has vertical sides in the calculations,​ thus the observed variation may be larger than the simulated variation. It is therefore possible to adjust the output //wcom// for the actual amplitude of the regulation volume (//wamp//). This will make the simulated and recorded water stage comparable below the threshold for a regulated lake. +A simple outlet lake has a threshold. The outflow ends if the water level drops below the threshold. Lake mean depth below the threshold is specified in GeoData.txt or LakeData.txt as //​lake_depth//​ in meters. Lake depth can also be set by parameters, i.e general parameter //gldepo// or olake region parameter //​olldepth//​. The threshold is also the the water level of the lake at the start of a simulation. The current water level is denoted as //wlm// in Fig. 2. For printing, the outlet lake water level (output variable //wcom//) is calculated in meters and you can set a reference level (//w0ref//) in LakeData.txt to get the same height system as any observations of the lake's water level. The lake’s //w0ref// is added to the water level above the threshold. HYPE assumes the lake has vertical sides in the calculations,​ thus the observed variation may be larger than the simulated variation. It is therefore possible to adjust the output //​wcom// ​(and //​wcav//​) ​for the actual amplitude of the regulation volume (//wamp//). This will make the simulated and recorded water stage comparable below the threshold for a regulated lake. 
  
 |{{:​start:​hype_model_description:​outletlakewithvariables2.png?​400|}}| |{{:​start:​hype_model_description:​outletlakewithvariables2.png?​400|}}|
start/hype_model_description/hype_routing.txt · Last modified: 2024/01/25 11:37 (external edit)