User Tools

Site Tools


start:hype_model_description:hype_routing

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
start:hype_model_description:hype_routing [2020/02/05 10:15]
cpers [Initalisation of lake volume]
start:hype_model_description:hype_routing [2020/02/05 10:26]
cpers [Main river]
Line 11: Line 11:
 The two lake types are separate classes. The lake classes have characteristics such as land use and soil type, which are defined together with the other classes'​ characteristics (in GeoClass.txt). Precipitation,​ atmospheric deposition and evaporation of rivers and lakes are calculated first, while river flow and inflow, transformation processes and the outflow of the lakes is calculated thereafter. Lakes and rivers are calculated in the model’s routing part after all classes are calculated for the subbasin. ​ The two lake types are separate classes. The lake classes have characteristics such as land use and soil type, which are defined together with the other classes'​ characteristics (in GeoClass.txt). Precipitation,​ atmospheric deposition and evaporation of rivers and lakes are calculated first, while river flow and inflow, transformation processes and the outflow of the lakes is calculated thereafter. Lakes and rivers are calculated in the model’s routing part after all classes are calculated for the subbasin. ​
  
-An outlet lake can be part of a larger lake. It is then called a lake basin. Lake basins are olakes in nearby subbasins. Outlet lakes that are not lake basins are referred to below as simple outlet lakes+An outlet lake can be part of a larger lake. It is then called a lake basin. Lake basins are olakes in nearby subbasins. ​
  
-A simple outlet lake has a threshold. The outflow ends if the water level drops below the threshold. Lake mean depth below the threshold is specified in GeoData.txt or LakeData.txt as //​lake_depth//​ in meters. Lake depth can also be set by parameters, i.e general parameter //gldepo// or olake region parameter //​olldepth//​. The threshold is also the the water level of the lake at the start of a simulation. The current water level is denoted as //wlm// in Fig. 2. For printing, the outlet lake water level (output variable //wcom//) is calculated in meters and you can set a reference level (//w0ref//) in LakeData.txt to get the same height system as any observations of the lake's water level. The lake’s //w0ref// is added to the water level above the threshold. HYPE assumes the lake has vertical sides in the calculations,​ thus the observed variation may be larger than the simulated variation. It is therefore possible to adjust the output //wcom// (and //wcav//) for the actual amplitude of the regulation volume (//wamp//). This will make the simulated and recorded water stage comparable below the threshold for a regulated lake. +A simple outlet lake has a threshold. The outflow ends if the water level drops below the threshold. Lake mean depth below the threshold is specified in GeoData.txt or LakeData.txt as //​lake_depth//​ in meters. Lake depth can also be set by parameters, i.e general parameter //gldepo// or olake region parameter //​olldepth//​. The threshold is also the the water level of the lake at the start of a simulation. The current water level is denoted as //wlm// in Fig. 2. For printing, the outlet lake water level (output variable //wcom//) is calculated in meters and you can set a reference level (//w0ref//) in LakeData.txt to get the same height system as any observations of the lake's water level. The lake’s //w0ref// is added to the water level above the threshold. A regulated lake (dam) has two thresholds. One, same as for a simple lake, is used for spill, and one lower threshold were outflow ends completely. The distance between the thresholds are determined by the regulation volume. HYPE assumes the lake/dam has vertical sides in the calculations,​ thus the observed variation ​in water level may be larger than the simulated variation. It is therefore possible to adjust the output //wcom// (and //wcav//) for the actual amplitude of the regulation volume (//wamp//). This will make the simulated and recorded water stage comparable below the threshold for a regulated lake. 
  
 |{{:​start:​hype_model_description:​outletlakewithvariables2.png?​400|}}| |{{:​start:​hype_model_description:​outletlakewithvariables2.png?​400|}}|
Line 201: Line 201:
 === Inflow from upstream subbasins === === Inflow from upstream subbasins ===
  
-In input files it is given to which subbasin(s) the outflow from each subbasin flows. The upstream flow enters the main river of the downstream subbasin. Inflow into the main river of a subbasin is calculated by adding outflows from upstream areas. Concentrations are flow-weighted by their relative share. ​+In input files it is given to which subbasin(s) the outflow from each subbasin flows. The upstream flow enters the main river of the downstream subbasin. Inflow into the main river of a subbasin is calculated by adding outflows from upstream areas. Concentrations are flow-weighted by their relative share. The upstream flow enters the main river, except if the upstream subbasin has a lakebasin that is part of the downstream subbasin'​s lake. In this case the upstream lakebasin outflow goes directly into the downstream lakebasin
  
  
start/hype_model_description/hype_routing.txt · Last modified: 2024/01/25 11:37 (external edit)